Ch 20 Carboxylic Acids and Nitriles Carboxylic Acids (RCO₂H) are compounds with an OH attached to a carbonyl. Nitriles (RC \equiv N) are compounds with a carbon-nitrogen triple bond. ## Naming Carboxylic Acids - 1. Replace final "e" of alkane parent with "oic", and follow with "acid". For example, pentanoic acid has a five-carbon chain. - 2. Number the C's in the parent, starting with carbonyl as #1. Then, precede name with the substituents, such as 2-hydroxybutanoic acid. - 3. If CO₂H is the substituent on a ring, follow the parent name with "carboxylic acid", such as cyclohexanecarboxylic acid and benzenecarboxylic acid (benzoic acid). - 4. Both "oic" and "carboxylic acid" may be preceded with "di" if there are two. For instance, butanedioic acid and 1,4-benzenedicarboxylic acid. - 5. Many common names are used. For instance, formic acid and acetic acid are used almost exclusively instead of the systematic names. (See Table 20.1) ## Naming Nitriles - 1. Name alkane parent after the longest chain and include the nitrile C. Follow parent name with "nitrile". For example, butanenitrile has 4 C's total. - 2. Number the C's in the parent, starting with nitrile C as #1. Then, precede name with the substituents, such as 2-hydroxybutanenitrile. - 3. If C≡N is the substituent on a ring, follow the parent name with "carbonitrile", such as cyclohexanecarbonitrile and benzenecarbonitrile (benzonitrile). - 4. Both "nitrile" and "carbonitrile" may be preceded with "di" if there are two. For instance, butanedinitrile and 1,4-benzenedicarbonitrile. ### Structure of Acids - The carbonyl C is sp² and trigonal planar with 120° bond angles. - The acid H will form a hydrogen bond with the carbonyl O of another molecule. - As a liquid or in solution, carboxylic acid molecules exist primarily in pairs. That is, the pairs are H-bonded dimers with two H-bonds per pair. - Carboxylic acids have more extensive H-bonding than alcohols, and as a result, they have higher melting points and boiling points as well. - The H-bonding properties also make the smaller acid molecules soluble in water. ### Acidity and Ionization - Carboxylic acids have $Ka \sim 10^{-5}$ (pKa ~ 5). So, they are weak acids with less acidity than mineral acids (pKa < -1), but much more acidic than alcohols (pKa > 15). - Acidity results from dissociation of the carboxyl O-H bond. - The carboxyl H can be removed easily because the carboxylate anion is stabilized by resonance (delocalization), so that the two O's share the positive charge. ### Carboxylic Acid Extraction - Longer-chained carboxylic acid molecules are not water-soluble, but the ionic sodium salts of their anions are semi-soluble, and are used as soaps. - Carboxylic acids can be extracted from an organic layer with aqueous NaOH, which ionizes the molecules so that they become water-soluble anions. - The anions can be separated from the aqueous layer by protonating again with acid. ### Substituent Effects on Carboxylic Acids - Substituents like halogens and nitro that are e⁻¹ withdrawing will stabilize the carboxylate anion, which increases acid strength. - For example, p-nitrobenzoic acid (pKa = 3.4) is stronger than benzoic acid (pKa = 4.2) due to e^{-1} withdrawing effects from both induction (σ bonds) and resonance (Π bonds). - Trifluoroacetic acid (pKa = -0.2) is much stronger than acetic acid (pKa = 4.7) due to e^{-1} withdrawing induction of the three C-F σ bonds. ## Preparation of Carboxylic Acids - Oxidation of alkylbenzenes with potassium permanganate (see Ch 16 notes) - Oxidation of 1° alcohols and aldehydes with chromium (VI) oxide in aqueous acid (See Ch's 17 and 19 notes) # - Hydrolysis of Nitriles A nitrile can be created by an S_N2 reaction between a 1° alkyl halide and a cyanide anion. The nitrile can be hydrolyzed to carboxylic acid with an acid or base catalyst. Note that the carboxylic acid has one more C than the alkyl halide. $$RCH_{2}X \xrightarrow{CN^{-1}} RCH_{2}CN \xrightarrow{H_{3}O^{+1}} O$$ $$S_{N}2 \qquad or OH^{-1} R CH_{2}COH$$ ### - Carboxylation of Grignard This reaction is accomplished by introducing dry CO₂ gas to a Grignard reagent. It is nucleophilic addition where the Grignard reagent's carbanion acts as a Nu to the electrophilic carbon atom of CO₂. Note that the carboxylic acid has one more C than the Grignard reagent. $$R^{-1}(MgX)^{+1} + O = C = O \longrightarrow R^{O} \xrightarrow{(MgX)^{+1}} H_{3}O^{+} \xrightarrow{(MgX)^{+1}} R^{O}$$ ### Reactions of Carboxylic Acids - Deprotonation The carboxyl H can be removed by bases. See previous section on Acidity and Ionization. - Reduction Although LiAlH₄ can reduce carboxylic acids, BH₃/THF is more effective. BH₃ reacts with carboxylic acids faster than with any other carbonyl, and the reaction proceeds at room temperature with high selectivity. - Nu Acyl Subst'n The carboxyl OH can be replaced by a stronger Nu, as seen in the introduction to carbonyls. These reactions will be studied in chapter 21 (carboxylic acid derivatives). - Alpha Subst'n An H on the alpha C can be removed to create a Nu. See the Introduction to Carbonyls, where this Nu takes part in an $S_{\rm N}2$ reaction. These reactions will be studied further in chapters 22 (alpha subst'n) and 23 (carbonyl condensations). Chemistry of Nitriles - The nitrile C is sp with two Π bonds, and has linear geometry. - There is a 180° bond angle from the N to the other atom attached to the C. - The negative charge on the nitrile C of CN⁻¹ causes it to be nucleophilic. - The nitrile C of an alkyl nitrile (RCN) undergoes electrophilic additions when nucleophiles are present. ### Preparation - A nitrile can be created most easily by an S_N2 reaction between a 1° alkyl halide and a cyanide anion. $$\begin{array}{c|c} CN^{-1} & H & H \\ H & C-CI & S_N 2 & N \equiv C-C & H & + CI^{-1} \\ R & & R & & \end{array}$$ A nitrile can also be created by dehydration of an amide (RCONH₂). This reaction can be accomplished with dehydrating agents such as thionyl chloride (SOCl₂) and phosphorous oxychloride (POCl₃). Unlike the S_N2 reaction, dehydration does not have steric requirements on the C next to the nitrile C. The first Π bond is created from N's lone pair when $SOCl_2$ (or $POCl_3$) bonds with the carbonyl O. After the intermediate loses one Cl^{-1} , then loses the first H+, the second Π bond forms when the second H+ leaves simultaneously along with SO_2 and Cl^{-1} . $$CI$$ $S=0$ CI $S=0$ CI $S=0$ CI $S=0$ $S=0$ CI $S=0$ ### Reactions of Nitriles Hydrolysis of a Nitrile A nitrile can be hydrolyzed with an acid or base catalyst to create an amide intermediate, which hydrolyzes further to a carboxylic acid. In the base-catalyzed reaction, the first step is Nu addition of OH⁻¹. Then, the anionic N accepts H⁺ from H₂O, which creates OH⁻¹ again. Next, an OH^{-1} deprotonates the hydroxyl, and this creates H_2O again. Then, the N's lone pair accepts H^+ from H_2O , which creates OH^{-1} again. This results in an amide. The amide undergoes substitution of OH⁻¹ for NH₂⁻¹. Deprotonation of the carboxylic acid by NH₂⁻¹ completes the process. - Reduction to Amine with Hydride Nucleophilic addition of H⁻¹ happens twice, and the dianion is neutralized by water. The result is a 1° amine. - Reduction to Ketone with Grignard Reagent Nucleophilic addition of a carbanion is followed by replacement of the N with an O. The result is a ketone.